Smoke Alarms

A smoke alarm, also known as a smoke detector, is a device that detects smoke and issues an audible sound and/or a visual signal to alert residents to a potential fire.

Facts and Figures

According to the Consumer Product Safety Commission:

  • Although most newer homes have smoke alarms, about one-third of all deaths in house fires in 2011 occurred in homes that lacked working smoke alarms.
  • Older homes are more likely to lack an adequate number of smoke alarms because they were built before requirements increased.
  • In 23% of home fire deaths, smoke alarms were present but did not sound. Sixty percent of these failures were caused by the power supplies having been deliberately removed due to false alarms.
  • Every year in the United States, about 3,000 people lose their lives in residential fires. Most of these deaths are caused by smoke inhalation, rather than as a result of burns.

Smoke Alarm Types

Ionization and photo-electric are the two main designs of smoke detectors. Both types must pass the same tests to be certified to the voluntary standard for smoke alarms, but they perform differently in different types of fires. Detectors may be equipped with one or both types of sensors — known as dual-sensor smoke alarms — and possibly a heat detector, as well.

These sensors are described as follows:

  • Ionization smoke sensors are the most common and economical design and are available at most hardware stores. They house a chamber sided by small metal plates that irradiate the air so that it conducts electricity. When smoke enters the chamber, the current flow becomes interrupted, which triggers an alarm to sound. These sensors will quickly detect flaming-type fires but may be slower to react to smoldering fires.
  • Photo-electric smoke sensors use a light-sensitive photocell to detect smoke inside the detector. They shine a beam of light that will be reflected by smoke toward the photocell, triggering the alarm. These sensor types work best on smoldering fires but react more slowly to flaming fires. They often must be hard-wired into the house’s electrical system, so some models can be installed only in particular locations.

While heat detectors are not technically classified as smoke detectors, they are useful in certain situations where smoke alarms are likely to sound false alarms. Dirty, dusty industrial environments, as well as the area surrounding cooking appliances, are a few places where false alarms are more likely and where heat detectors may be more useful.

Location

Individual authorities having jurisdiction (AHJs) may have their own requirements for smoke-alarm placement, so homeowners can check with their local building codes if they need specific instructions. The following guidelines, however, can be helpful.

Smoke alarms should be installed in the following locations:

  • on the ceiling or wall outside of each bedroom;
  • in the basement, preferably on the ceiling near the basement stairs;
  • in the garage, due to all the combustible materials commonly stored there;
  • on the ceiling or on the wall, with the top of the detector between 6 to 12 inches from the ceiling; and/or
  • in each story within a building, including basements and cellars, but not crawlspaces or uninhabited attics.

Smoke alarms should not be installed in the following locations:

  • near heating or air-conditioning supply and return vents;
  • near a kitchen appliance;
  • near windows, ceiling fans or bathrooms equipped with a shower or tub;
  • where ambient conditions, including humidity and temperature, are outside the limits specified by the manufacturer’s instructions;
  • within an unfinished attic or garage, or in other spaces where temperatures can rise or fall beyond the limits set by the manufacturer;
  • where the mounting surface could become considerably warmer or cooler than the rest of the room, such as an inadequately insulated ceiling below an unfinished attic; or
  • in dead-air spots, such as the top of a peaked roof or a ceiling-to-wall corner.

Power and Interconnection

Power for the smoke alarms may be hard-wired directly into the building’s electrical system, or it may come from just a battery. Hard-wired smoke detectors are more reliable because the power source cannot be removed or drained, although they will not function in a power outage unless they also have batteries for backup. Battery-operated units often fail because the battery can be easily removed, dislodged or drained, although these units can be installed almost anywhere. Older buildings might be restricted to battery-powered designs, while newer homes generally offer more options for power sources. If possible, homeowners should install smoke alarms that are hard-wired with a battery backup, especially during a renovation or remodeling project.

Smoke alarms may also be interconnected so that if one becomes triggered, they all sound in unison. Interconnected smoke alarms are typically connected with a wire, but new technology allows them to be interconnected wirelessly. The National Fire Protection Agency requires that smoke alarms be protected by arc-fault circuit interrupters (AFCIs).

More Tips:

  • Parents should stage periodic night-time fire drills to assess whether their children will awaken from the alarm and respond appropriately.
  • Never disable a smoke alarm. Use the alarm’s silencing feature to stop nuisance or false alarms triggered by cooking smoke or fireplaces.
  • Test smoke alarms monthly, and replace their batteries at least twice per year. Change the batteries when you change your clocks for Daylight Saving Time. Most models emit a chirping noise when the batteries are low to alert the homeowner that they need replacement.
  • Smoke alarms should be replaced when they fail to respond to testing, or every 10 years, whichever is sooner. The radioactive element in ionization smoke alarms will decay beyond usability within 10 years.
  • Smoke detectors should be replaced if they become damaged or wet, are accidentally painted over, are exposed to fire or grease, or are triggered without apparent cause.
  • Note the sound of the alarm. It should be distinct from other sounds in the house, such as the telephone, doorbell and pool alarm.

Bathroom Sinks (Lavatories)

A lavatory is a washbasin or sink located in a bathroom or washroom. “Lavatory” means washbasin or sink, and is derived from the Latin word lavatorium, which means washing vessel, and the French word laver, meaning “to wash.” Lavatories come in a variety of shapes and sizes. They are available in enameled cast-iron, vitreous china, stainless steel, porcelain-enameled formed steel, plastic, and non-vitreous ceramic. They can be wall-mounted, hanger-mounted, under-mounted, pedestal, rimmed, and above-center basin types.
Countertops integrated with lavatories are constructed of a variety of materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, acrylic, polyester, and cultured marble. Plastic vanity tops should be impregnated with fire-resistant chemicals to reduce the fuel contribution of the lavatory during a house fire or the accidental fire from a plumber’s torch. They are also made to resist the effect of a burning cigarette left unattended on the vanity top.

Lavatories should have a waste outlet of at least 1-1/4 inches in diameter. Each lavatory must have a strainer, a pop-up stopper, a crossbar, or other mechanism to prevent items such as rings, toothbrushes and cosmetic items from dropping into the drain.

Lavatory Overflows

Former standards required lavatories to have an overflow, but that is no longer the case. The overflow is now an option of the manufacturer. The reason for not requiring an overflow at a lavatory is because of the lack of use of the overflow, which can cause bacterial and micro-organism growth.

Where a lavatory does have an overflow installed, the cross-sectional area of the overflow should be a minimum of 1-1/8 inches; anything larger can promote bacterial and micro-organism growth. The overflow should be able to prevent overflowing of the sink for a minimum of five minutes when tested from the onset of water flowing into the overflow’s opening.

Maintenance Tips

There are many different designs of lavatories, including artisanal styles that sit up on the vanity, rather than being dropped into a recessed cavity in the vanity or countertop. Regardless of the style or whether it includes an overflow opening, the washbasin should be securely attached to the vanity, be free of cracks and other defects, and have gaps that are properly caulked to prevent moisture buildup, which can lead to unsanitary conditions, including mold growth.

Showers & Bathtubs

Bathtubs

Bathtubs are made from many different types of materials, including enameled cast-iron, porcelain-enameled steel, and plastic. Plastic tubs are made from materials including ABS, PVC, fiberglass, fiberglass-reinforced plastic, acrylic, and cultured-marble acrylic. Bathtubs that are equipped with shower fixtures should be manufactured with slip-resistant surfaces. Bathtubs should have a drainage outlet (tailpiece) with a minimum diameter of 1-1/2 inches. Every tub should be equipped with a stopper. The bathtub should have an overflow outlet installed. The overflow prevents flooding if the tub is being filled while unattended, and prevents overflow of the water when a person enters a tub that is full.

Fire-Resistance

Bathtubs made of plastic are tested for fire ignition. They are made with fire-resistant chemicals to reduce their fuel contribution in a house fire, or an accidental exposure to a plumber’s torch.

Large Bathtub Loads

Some bathtubs are so large that they can accommodate more than one person at a time. These larger bathtubs may need special and additional structural support underneath them to adequately support the load.
A 3×4-foot bathtub may have a capacity to hold 200 gallons or more. The weight of the bathtub, water, and occupants may total over 1 ton, considering:

200 pounds for the bathtub
1,600 pounds of water
350 pounds for two people
= 2,150 pounds

A very large tub may cause structural problems because live-loading for a typical residential home is 40 pounds per square foot. The live load for a 3×4-foot occupied tub may be assumed to be only 480 pounds, but may weigh over 2,000 pounds while it is in use.

Maintenance Tips

The homeowner should make sure that the tub is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix.

Showers

Plastic, pre-fabricated shower units are constructed of various synthetic materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, cultured marble, cast-filled fiberglass, polyester, cultured marble acrylic, and acrylic. These shower units are impregnated with fire-retardant chemicals to reduce the fuel contribution during a fire, and protection against an accidental burn by a plumber’s torch.

The showerhead height is not typically regulated by building codes, but the head is commonly installed 70 to 80 inches above the shower floor.

Shower Water Pipes

Water-supply pipes from the shower valve to the showerhead outlet — referred to as the shower riser pipes — whether exposed or not, must be firmly attached to a structural component to prevent the pipes from leaking caused by stress fractures or joint failures. Movement of the showerhead may move the riser piping, possibly causing failure of the piping. The risers must be firmly secured.

The common practice for installing the riser pipe is to place a drop-ear elbow at the top of the riser pipe. The elbow has two wing connections. They can be screwed to a structural backing board, such as a 2×4. A pipe strap can be used instead of a drop-ear elbow. When the riser is exposed, the manufacturer will typically provide a strap or attachment device to match the finish of the fixture and pipe. The strap or attachment device should be firmly secured to a structural component.

Shower Outlets

The waste outlet for a shower should have minimum diameter of 1-1/2 inches. The shower outlet should have a strainer that is at least 3 inches in diameter, with dimensional openings in the strainer of at least a 1/4-inch. The strainer should be removable.

Shower Area

A shower compartment should have an interior cross-sectional area of at least 900 square inches. This will allow an average-sized adult to clean the lower body while bending over. A shower that’s any smaller would be inadequately sized. Shower compartments should be at least 30 inches in minimum dimension. This measurement is based on the movement of an adult body inside a shower and measured from the finished interior dimension of the compartment, excluding fixture valves, showerheads, soap dishes and grab bars. There are exceptions for showers having fold-down seats, and those with compartments at least 25 inches wide and 1,300 square inches in cross-sectional area.

The exception allows for a shower with one dimension being 25 inches, provided the compartment has at least 1,300 square inches of cross-sectional area. This is useful to contractors and DIY homeowners who remove an old bathtub and install a standup shower fixture in the same space.

Shower Walls

Showers and bathtubs with installed showerheads should be finished with a non-absorbent surface that shall extend to a height of not less than 6 feet above the floor level of the room, or 70 inches above the shower floor. It should be constructed of smooth, corrosion-resistant and non-absorbent materials to protect the structural components from moisture damage. The gypsum or cement wallboard behind ceramic tiles of a shower wall should be water-resistant. The water-resistant material is not required in the rest of the bathroom, although it is a common practice to use water-resistant gypsum wallboard in other areas of the bathroom because of the moisture levels.

Shower Access and Egress Opening

Many injuries in a home are related to accidents in the bathtub or shower. The minimum opening requirements for access and egress allows an adult enough room to safely step into and exit the shower area without having to twist or turn through a narrow opening. The shower opening (or access and egress opening) should be at least 22 inches of clear and unobstructed finish-width. The 22-inch width is based on the approximate shoulder width of an average-sized adult, and provides comfortable access to service the valves, showerheads and drain. It allows for emergency response and rescue access, and emergency egress.

Shower Floors

The shower floor surface must be watertight with smooth, corrosion-resistant, non-absorbent, waterproof materials. Joints between the floor and walls of the shower must be sealed or flashed to prevent water penetration. Ideally, there should be some type of slip-resistant floor surface. The shower floor structure needs proper support by a smooth and structurally sound base. The base of the shower floor should be designed to support both dead (structural) and live (people and water) loads.

Shower pans and liners are installed under and around showers to prevent moisture intrusion from getting into the structural supports under and behind the shower enclosure. They must meet specific standards for material, installation and size in order to support both dead and live loads.

Shower Glazing

Glass doors enclosing the shower should be made of safety glazing. If a window is installed in the shower, the window should be made of safety glazing to provide protection. If a person slips or falls inside the shower, s/he may be seriously injured by broken glass if the glass is not made of safety glazing. The safety glazing should be correctly labeled by being permanently marked in a corner, legible and visible after installation, and indoor applications should be marked “indoor use only.”

Maintenance Tips

Similar to other bathroom fixtures, the homeowner should make sure that the shower is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix. Additionally, if the glazing for the showers doors is damaged, it should be replaced, as cracked glazing can break without notice and cause serious injuries.

Toilets & Bidets

A water closet in the U.S. is commonly referred to as a toilet. The term “water closet” originates from the time when plumbing was brought indoors, and defecation took place in a small, closet-size room with a pot.

Toilet Styles

There are three styles of water closets: close-coupled, one-piece, and flushometer valve. The most common is the close-coupled water closet, which has a bowl and separate gravity-type tank or flushometer tank that is supported by the bowl. A one-piece water closet is constructed with the gravity-type tank or flushometer tank and bowl as one integral unit. A flushometer-valve water closet is a bowl with a flushometer valve. Water closet bowls come in six styles: blow-out, siphon jet, reverse trap, wash-down, siphon vortex, and siphon wash.
Toilet Measurements
A water closet has a water consumption limit of a maximum average of 1.6 gallons of water per flush. The general bowl rim height above the floor is between 14 and 15 inches. Other rim heights may be needed for water closets used by children (10 inches), and the elderly and persons with physical disabilities (18 inches). Elongated water closet bowls are required for public or employee use but are often installed in homes. An elongated bowl is 2 inches longer than a regular bowl.

Defects at Toilets

The water closet (toilet) may have a clogged drain. While flushing the toilet, watch the flush performance, and use toilet paper as part of this test. There should be no excessive odors around the water closet. Check the flooring around the toilet with your foot. Using the side of your leg, check to see if the toilet is securely attached to the floor. If it wobbles, the screws at the base may be loose, or the wax ring that adheres the fixture to the waste pipe may be worn or of the wrong size. If so, it should be replaced. Look for dampness around the bottom of the toilet base. Toilets sometimes run continuously. Check for a water shut-off valve. Some toilets are mistakenly connected to the hot water system. Tank lids are often cracked. Any defective parts should be immediately replaced to avoid backup flooding.

Bidets

Common in much of Europe and Asia, bidets are toilet-like plumbing fixtures designed to promote posterior hygiene. They’re becoming increasingly common in North America. Contrary to popular belief, a bidet is not an alternative to a toilet. Its purpose is as a hygiene device following toilet use. However, some bidets have been incorporated into toilets, especially in bathrooms that are not large enough for both fixtures.

Bidets, like toilets, are typically made from porcelain and contain a deep recess within a wide rim. They emit an arc of clean water from a nozzle that may be located beneath the rear of the rim or deep within the fixture’s cavity. Users can sit on the rim (or seat, if it has one), or straddle the fixture and face in either direction. He or she can decide which direction to face based on the water jet configuration and the part of their body that needs cleaning. Water temperature and pressure can be adjusted with knobs in order to arrive at the desired settings.

Some bidets come with built-in air dryers. Toilet paper can be used for this purpose if no dryer is available. The bidet can be rinsed after use to keep it clean.

Benefits

People who suffer from hemorrhoids, irritable bowel syndrome, or have recently had surgery can find relief with the more gentle water flow of a bidet.
As the bidet requires less operator mobility, they are easier to use for the elderly, disabled and obese.
Many believe that the use of bidets is more hygienic and effective than toilet paper.
Safety Precautions

Users should familiarize themselves with the rate of temperature and pressure changes that occur when they adjust the controls. Sensitive regions can be burned if the user is not careful, and high water pressure can be irritating.
Users should know in advance the direction of the water arc and position themselves accordingly. The spray can be powerful enough to strike a person in the face.
Bathroom Sinks (Lavatories)

Lavatories

A lavatory is a washbasin or sink located in a bathroom or washroom. “Lavatory” means washbasin or sink, and is derived from the Latin word lavatorium, which means washing vessel, and the French word laver, meaning “to wash.” Lavatories come in a variety of shapes and sizes. They are available in enameled cast-iron, vitreous china, stainless steel, porcelain-enameled formed steel, plastic, and non-vitreous ceramic. They can be wall-mounted, hanger-mounted, under-mounted, pedestal, rimmed, and above-center basin types.
Countertops integrated with lavatories are constructed of a variety of materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, acrylic, polyester, and cultured marble. Plastic vanity tops should be impregnated with fire-resistant chemicals to reduce the fuel contribution of the lavatory during a house fire or the accidental fire from a plumber’s torch. They are also made to resist the effect of a burning cigarette left unattended on the vanity top.

Lavatories should have a waste outlet of at least 1-1/4 inches in diameter. Each lavatory must have a strainer, a pop-up stopper, a crossbar, or other mechanism to prevent items such as rings, toothbrushes and cosmetic items from dropping into the drain.

Lavatory Overflows
Former standards required lavatories to have an overflow, but that is no longer the case. The overflow is now an option of the manufacturer. The reason for not requiring an overflow at a lavatory is because of the lack of use of the overflow, which can cause bacterial and micro-organism growth.

Where a lavatory does have an overflow installed, the cross-sectional area of the overflow should be a minimum of 1-1/8 inches; anything larger can promote bacterial and micro-organism growth. The overflow should be able to prevent overflowing of the sink for a minimum of five minutes when tested from the onset of water flowing into the overflow’s opening.

Maintenance Tips

There are many different designs of lavatories, including artisanal styles that sit up on the vanity, rather than being dropped into a recessed cavity in the vanity or countertop. Regardless of the style or whether it includes an overflow opening, the washbasin should be securely attached to the vanity, be free of cracks and other defects, and have gaps that are properly caulked to prevent moisture buildup, which can lead to unsanitary conditions, including mold growth.

Water Heaters

A water heater is an appliance that heats potable water and supplies heated water to the home’s plumbing distribution system. Most tanks are insulated steel cylinders with an enamel coating on the inner surface. They are referred to as glass-lined tanks. The lining helps prevent corrosion. A water heater can literally explode if it’s not installed properly. There are standards that regulate the materials, design and installation of water heaters and their related safety devices. Certification marks on them from approved agencies indicate compliance with approved standards.

Conventional residential water heaters have life expectancies that vary greatly. The typical water heater has a lifespan of about 10 years, based on the following factors: correct installation; usage volume; construction quality; and maintenance.

Correct Installation

A water heater should generally be installed upright. Installing a water heater on its side will place structural stress on it due to inadequate support for the heater and its pipes, and may cause premature failure. Water heaters should be installed in well-ventilated areas — not just for fire safety requirements and nitrous-oxide buildup, but also because poor ventilation can shorten its lifespan. A water heater should also not be placed in an area susceptible to flood damage. Water can rust out the exterior and pipes, decreasing the life expectancy and efficiency of the unit. A water heater is best placed in an easily accessible area for maintenance. It should also be readily visible for fire and health-hazard requirements.

Usage

The life expectancy of the water heater depends a great deal on the volume of water used. Using large quantities of water means that the water heater will have to work harder to heat the water. In addition, the greater the volume of water, the greater the corrosive effect of the water will be on the tank materials, pipes, etc.

Construction Quality

As with most household systems and components, you get what you pay for in a water heater. Cheaper models will generally have a shorter lifespan, while more expensive models will generally last longer. A good indication of a water heater’s construction quality is its warranty. Longer warranties naturally imply sound construction. According to a 2007 Consumer Report that deconstructed 18 different models of water heaters, it was determined that models with longer warranties were of superior manufacturing quality, with nine- and 12-year models typically having larger or higher-wattage heating elements, as well as thicker insulation. Models with larger heating elements have a much better resistance to mineral buildup or scum.

Pay attention to the model’s features. For example, porcelain casing provides an additional layer of protection against rusting, and a greater level of heat insulation. Some models come with a self-cleaning feature that flushes the pipes of mineral deposit buildup, which can affect the unit’s lifespan. Models with larger or thicker anodes are better-equipped to fight corrosion.

Maintenance and Parts Replacement

The hardness of the water is another consideration when looking at estimating the lifespan of a water heater. In areas where there is a higher mineral content to the water, water heaters have shorter a lifespan than in other areas, as mineral buildup reduces the units’ efficiency. Even in areas where the water is softer, however, some mineral deposition is bound to occur. A way to counteract this mineral buildup is to periodically flush the water heater system, which not only removes some of the buildup, but, in tank systems, the process heats the water in the tank. Higher-end models typically come equipped with a self-flushing feature. In models for which manual flushing is required, it is important not to damage the water heater valve, which is usually made of plastic and is easy to break.

Although an older model may appear to be well-maintained, a question arises: Is the maintenance worth it? Warranties often exclude labor costs, so a good rule to follow is that if the total repair cost per year is greater than 10% of the cost of buying and installing a new water heater, it is probably not worth replacing any damaged parts.

WDO & Pest Control

Wood-destroying organisms and other pests can cause serious problems in the wooden structural components of a house, and an infestation may go unnoticed until the damage is already extensive. Control measures include preventing insect entry by sealing holes and cracks, and hiring a professional to apply chemicals for remedial treatment. The most commons types of destructive insects are termites and ants.

Termites

Subterranean termites are the most damaging insects of wood. Their presence is hard to notice, and damage usually is found before the termites are seen. You should take measures to prevent infestations, which may require hiring a pest-control service.
If you see the following signs in your house, you might have termites:

  •    frass or sawdust-like droppings, which result from the termites’ tunneling activity;
  •    dirt or mud-like tubes or trails on various parts of the home’s structure, such as wooden support members, plumbing pipes, etc.;
  •    damaged wood members (such as window sills); and
  • swarming winged insects within the home, especially in the spring or fall.

Ants

Ants are among the most prevalent pests in households, restaurants, hospitals, offices, warehouses, and virtually all buildings where food and water can be found. While mostly harmless to humans, carpenter ants can cause considerable damage.
The following clues are evidence that your home is host to an ant infestation:

  •    long trails of ants, perhaps numbering in the hundreds or thousands. Ants assemble in long trails along structural elements, such as wires and pipes, and frequently use them to enter and travel within a structure to their destination;
  •    a few straggler ants, which are scouts in search of food and nesting sites;
  •    holes or cracks in walls or the foundation, especially where pipes enter the building, and around windows and doors. These can provide entry points for ants and other insects.  The kitchen (where food is stored and prepared) is a particular problem area;
  •    frass deposits, which result from the ants carving tunnels or galleries in the wood;
  •    a distinctive rustling sound similar to the crinkling of cellophane. Ants are small but their nests are large enough to produce perceptible noise; and
  •    nests in mulch and vegetation outdoors next to the foundation. Check under potted plants, patio blocks, stepping stones, in piles of rocks, lumber and firewood.

Other Pests

Snakes, spiders, bees and/or scorpions may be living in your crawlspace, and while they pose little structural danger to the house, they certainly can harm you. Rapid retreat there can be difficult, so if you’re in your crawlspace for any reason (storing items, looking for moisture intrusion or a water leak, etc.), be aware of your escape paths, and carry an extra flashlight in case the one you’re using suddenly stops working.

Your crawlspace is also the most likely area in the house where hantavirus may be found. This is partly due to the fact that rodents that carry the pathogen are attracted to areas that are undisturbed by humans. Also, crawlspaces are generally dark places that lack ultraviolet (UV) radiation, which can rapidly inactivate the virus. Exposure to hantavirus may lead to Hantavirus Cardiopulmonary Syndrome (HCS), characterized by headaches, fever, difficulty breathing and, often, death. There is no known cure, vaccine or treatment that specifically targets HCS. However, if the symptoms are recognized early, patients may benefit from oxygen therapy.

The Importance of a WDO Inspection

Regular inspections of your house are an important part of home maintenance. Inspecting for wood-destroying insects can alert you to possible infestations in the wooden structural components of your home—a serious problem that often goes undetected for a long time. Call your InterNACHI inspector for a WDO Inspection if you suspect that your home may be infested.

HVAC Filter Maintenance

Part of responsible homeownership includes, of course, regular home maintenance. And there are some tasks that, if deferred, can lead to a home system that’s inefficient and overworked, which can result in problems and expenses. One such task is changing the filter of the home’s HVAC system. It’s simple and inexpensive, and taking care of it at least every three months can mean the difference between optimum comfort and avoidable repairs.

What Can Go Wrong

Most homes have some sort of furnace or heat pump, and many of those homes (especially newer ones) have combined heating, ventilation and air-conditioning or HVAC systems. Each type uses some type of air filter or screen to prevent larger airborne particles (up to 40 microns) from entering the system and clogging sensitive machinery. A system that has a dirty filter can suffer from pressure drop, which can lead to reduced air flow, or “blow-out,” resulting in no air infiltration at all. Any of these conditions can cause the system to work harder to keep the home warm or cool (depending on the season and the setting). And any mechanical component that has to work harder to run efficiently puts undue stress on the whole system, which can lead to premature failure, resulting in repair or replacement.

Also, a dirty filter that’s exposed to condensation can become damp, which can lead to mold growth that can be spread throughout the home by the HVAC system. This can lead to serious health consequences, not to mention a compromised unit that will likely require servicing and may require replacement, depending on the severity of the moisture problem.

Types of Filters

Most HVAC and furnace filters are disposable, made of biodegradable paper or similar media, and shaped in cells, screens or fins designed to trap as much airborne debris as possible. Filters can typically be purchased in economical multi-packs, and there are many types that will fit different models of furnace/HVAC units. It’s important to use the appropriate filter for your unit; using the wrong filter that doesn’t fit the unit properly can create the same types of problems as having a dirty filter. Your HVAC installer can show you where the filter goes and how to remove the old one and install a new one. Your unit may also have an affixed label with directions for easy filter replacement.

How Often?

Your HVAC or furnace technician should service your unit once a year. Because a furnace/HVAC unit contains moving parts, it’s important that belts are not cracked and dry, ventilation ductwork is not gapped, cracked or rusted, and components, such as coils and fans, are clog-free and adequately lubricated for unimpeded operation. This sort of evaluation is best left to the professional, unless you’ve had the appropriate training.

The filter of the unit, especially if it’s an HVAC unit that will tend to get nearly year-round use, should be changed by the homeowner at least every three months, but possibly more often.

Check your filter’s condition and change it once a month if:

  • You run your unit six months a year to year-round.
  • You have pets.  Pet dander can become airborne and circulate through the home’s ventilation system just as typical household dust does.
  • You have a large family.  More activity means more household dust, dirt and debris.
  • You smoke indoors.
  • You or someone in your household suffers from allergies or a respiratory condition.
  • You live in a particularly windy area or experience high winds for extended periods, especially if there are no nearby shrubs or trees to provide a natural windbreak.
  • You live in an area prone to or having recently experienced any wildfires.  Airborne ash outdoors will eventually find its way indoors.
  • You have a fireplace that you occasionally use.
  • You live on a working farm or ranch.  Dust and dirt that gets kicked up by outdoor work activity and/or large animals can be pulled into the home’s ventilation system, especially through open windows.
  • You have a large garden.  Depending on its size and how often you work it, tilling soil, planting, pulling weeds, using herbicides and pesticides, and even watering mean that dirt, chemicals and condensation can be pulled into your home’s ventilation system.
  • There is construction taking place around or near the home.  You may be installing a new roof or a pool, or perhaps a neighbor is building a home or addition.  Even if the activity is only temporary, dust and debris from worksites adjacent to or near the home can be sucked into the home’s ventilation system, and this increased activity can tax your HVAC system.

Change the filter immediately if:

  • The filter is damaged.  A damaged filter won’t work as intended.
  • The filter is damp.  A filter affected by moisture intrusion, system condensation, or even high indoor humidity can quickly become moldy and spread airborne mold spores throughout the home via the ventilation system.
  • There is evidence of microbial growth or mold on the filter.  Mold spores already infiltrating the home via the HVAC system are not only bad for the unit itself, but they can pose a health hazard for the family, ranging from an irritated respiratory system to a serious allergic reaction.

Tips on Changing the Filter

  • Turn off the unit before replacing the filter.
  • Use the right filter for your unit and make sure it’s not damaged out of the package.
  • Follow the directions for your unit to make sure you’re installing the filter properly.  For example, many filters use different colors for the front and back (or upstream and downstream flow) so that they’re not installed backwards.
  • Make sure there aren’t any gaps around the filter frame.  If this is the case, you may have the wrong size filter, or the filter itself may be defective or damaged.
  • Use a rag to clean up any residual dust before and after you replace the filter.
  • Securely replace any levers, gaskets and/or seals.
  • Turn the unit on and observe it while it’s operating to make sure the filter stays in place.
  • Note the date of filter replacement in a convenient location for the next time you inspect it.  A filter that becomes dirty enough to change within a short period of time may indicate a problem with the unit or ventilation system, so monitoring how often the filter requires changing is important information for your technician to have.

Call a technician for servicing if:

  • Your unit fails to turn back on.
  • The fan is slow or makes excessive noise, or the fins are bent.
  • The coils are excessively dusty or clogged.
  • You notice moisture intrusion from an unknown source anywhere in the system.

Homeowners who take care of the easy task of changing their HVAC filter can help prevent system downtime and avoidable expenses, as well as keep their families living and breathing comfortably. Your InterNACHI inspector can provide more useful tips and reminders during your Annual Home Maintenance Inspection.

Preventing Water Intrusion in Basements & Crawlspaces

The biggest concern for homeowners related to their basement and/or crawlspace area is unwanted moisture intrusion. This can be the result of several factors, which is why homeowners should occasionally check these areas.

The basement is typically the area of a home most at risk for water damage because it’s located below grade and surrounded by soil. Soil releases the water it has absorbed during rain or when snow melts, and the water can end up in the basement through cracks. Water can even migrate through solid concrete walls via capillary action, which is a phenomenon whereby liquid spontaneously rises in a narrow space, such as a thin tube, or via porous materials. Wet basements can cause problems that include peeling paint, toxic mold contamination, building rot, foundation collapse, and termite damage. Even interior air quality can be affected if naturally occurring gases released by the soil are being transmitted into the basement.

Properly waterproofing a basement will lessen the risk of damage caused by moisture or water. Homeowners should be aware of what they can do to keep their basements and crawlspaces dry and safe from damage.

Prevent water entry.

You can help prevent water from entering the basement by ensuring that it’s diverted away from the foundation. Poor roof drainage and surface runoff due to gutter defects and improper site grading may be the most common causes of a wet basement.

Here are some measures to use to divert water away from the foundation:

  • Install and maintain gutters and downspouts so that they route all rainwater and snow melt at least 10 feet away from the foundation to prevent pooling near the exterior walls.  At the point where water leaves the downspout, it should be able to flow freely away from the foundation instead of back toward it, and it should not be collecting in standing puddles.  A backsplash and diverter can help with this.
  • The finish grade should be sloped away from the building for 10 to 15 feet.  Low spots that may lead to water pooling near the foundation should be re-graded and evened out.
  • Shallow ditches called swales should be dug if one or more sides of the home face an upward slope.  A swale should slope away from the home for 10 to 15 feet, at which point it can empty into another swale that directs water around to the downhill-side of the property, leading it away from the foundation.

Repair all cracks and holes.

There are several causes of cracks and holes that permit moisture intrusion. Poor workmanship during the home’s construction is one factor. Water pressure from the outside can also build up, forcing water through the walls. The house may have settled, causing cracks in the floor or walls. It’s important to repair all cracks and small holes to prevent leaks and floods. Any large cracks or holes should be evaluated by a professional after consulting with your InterNACHI home inspector.

Here are some steps to take if you suspect that water is entering the basement through cracks or holes:

  • Examine the basement for holes and cracks and for moisture, leaks and discoloration.
  • A waterproof mixture of epoxy and latex cement can be used to fill small hairline cracks and holes.
  • Any cracks larger than about 1/8-inch should be filled with mortar made from one part cement and two parts fine sand, with just enough water to make a fairly stiff mortar.  It should be pressed firmly into all parts of the larger cracks and holes to be sure that no air bubbles or pockets remain. As long as water is not being forced through the basement walls due to outside pressure, the application of mortar with a standard trowel will be sufficient if special care is taken to fill all cracks completely.
  • If water is being forced through by outside pressure, a slightly different method of patching can be used, involving chiseling out the mouth the crack along its length and cutting a dovetail groove, which is then filled with mortar.  You may wish to defer this type of repair to a masonry professional.
  • Sodium silicate is a water-based mixture that will actually penetrate the substrate by up to 4 inches.  Concrete, concrete block and masonry include lime as a natural component, which reacts with the sodium silicate to produce a solid, crystalline structure that fills in all the microscopic cracks, holes and pores.  No water vapor or gas will be able penetrate via capillary action because the concrete and masonry have now become harder and denser from the sodium silicate. It is an alkaline substance and, as such, can burn the skin and eyes on contact.  Inhalation can also cause respiratory irritation. All surfaces receiving this treatment must be prepared, and the several required applications must be thorough. These are all reasons that this type of work should be performed by a trained professional.

Always have any large cracks evaluated by your InterNACHI inspector before undertaking any repairs yourself or hiring a professional, and check your basement and crawlspace regularly for moisture intrusion.

Preventing Cracks in Masonry Walls & Foundations

Regardless of the type of cladding covering the exterior of homes, most homes’ foundations are built using a reinforcing metal structure covered by some kind of concrete or masonry. There are many green homes and alternative building methods that use wood and other materials, but masonry foundations are the most popular. If your home has a masonry foundation (including masonry walls), here are some things to know, especially if you notice the development of any defects, cracks, or moisture intrusion in your crawlspace or basement.

Every homeowner should occasionally check the exterior of their home’s foundation, especially if there have been severe weather or geological events, such as heavy rains, flooding, or seismic activity, or nearby construction or industrial work that creates noticeable vibration, such as roadwork, the installation of oil or gas wells or pipeline, etc.

Before looking at the exterior, it’s useful to know which walls are load-bearing and which are not. Usually, this can be done by examining the beams and joists in the basement, crawlspace or attic. Also, note whether the walls are solid masonry or masonry-cavity, non-structural brick, or stone veneer. The overall quality of the building’s construction, and often that of its neighborhood, will be a good indicator of the condition of your home’s masonry.

All exposed masonry should be inspected for the following:

  • cracking;
  • spalling, which is the chipping or flaking of concrete, bricks or other masonry when improper drainage or venting and freeze-thaw weather cycling exists;
  • bowing, which is the term used to describe vertical bulging;
  • sweeping, which is horizontal bulging;
  • leaning; and
  • mortar deterioration.

Masonry Cracks

Although masonry can deform elastically over long periods of time to accommodate small amounts of movement during freeze-thaw cycles, large movements can cause masonry cracking, which may appear along the mortar joints or through the masonry units.

Cracking can result from a variety of problems:

  • differential settlement of the foundation;
  • drying shrinkage (particularly in a concrete block foundation);
  • expansion and contraction due to ambient thermal and moisture variations;
  • improper support over door and window openings, which is the effect of freeze-thaw cycles;
  • the corrosion of iron and steel wall reinforcement;
  • differential movement between building materials;
  • the expansion of salts in the cement mixture;
  • efflorescence,  which is the white powder that forms on the surface of concrete/masonry walls as a result of water evaporation (and a cosmetic issue only); and
  • the bulging or leaning of walls.

Testing

Most common masonry wall cracks are caused by thermal or moisture expansion. Active cracks can be sealed with a flexible sealant. Inactive cracks may be pointed, which is the process of filling joints between masonry units or bricks with mortar. Some of this work should be undertaken by a masonry professional.

If there are evident or suspected problems, two methods of testing are sometimes useful for assessing masonry. This first test should be performed by a qualified masonry contractor. Probe holes can be drilled through the joints or masonry units with a masonry bit and probed with a stiff wire (or a fiber optic camera) to determine a wall’s thickness and the adequacy of its mortar. The probe holes are then patched after the investigation has been completed.

A hammer test can be used to determine the structural soundness of masonry units and their bond to the mortar. In a hammer test, the masonry is tapped lightly with a hammer, and the resonance of the sound produced is evaluated. Individual bricks can be replaced and the mortar re-pointed, as damaged bricks cannot be repaired. If re-pointing, the new mortar should be of the same composition as the existing mortar to prevent deterioration.

There may be a substantial difference in the masonry walls in buildings built during the last 40 to 50 years compared to those constructed earlier. Walls became thinner as designers began to more effectively exploit the compressive strength of masonry. This was done by using higher-strength masonry materials and mortars. But this change came at the expense of flexibility; as such, today’s masonry walls and foundations are often more brittle than their massive ancestors and, therefore, particularly susceptible to stress-induced damage. That’s why homeowners should be vigilant with their homeowner maintenance plan by occasionally checking the condition of their home’s foundation, along with any masonry walls.

Roof Penetrations: Vents

Homeowners don’t generally want to climb on their roofs to check its condition unless they’ve experienced a major storm or other issue that prompts them to investigate. This is smart because, as untrained non-professionals, homeowners are at greater risk for accidents and injuries than pros.

But it’s useful for homeowners to know what they’re likely to find if they do climb their roof—or have someone else climb it, such as an insurance adjuster or roofing contractor—so that they have some idea of what the components are and what they do, as well as when those components are damaged and creating problems down below.

The proper term for anything that pokes out of the surface of the roof is known as a roof penetration. Whether it’s a chimney, skylight or vent pipe, it falls under that category. As such, there are important elements related to the installation of all roof penetrations that prevent their premature deterioration, which means that your roof and the structure under it will stay dry and problem-free.

Vents

The most common type of roof penetration are vents. Every home has them. Vents are installed to expel gas or moisture of some sort from an appliance or area inside the house. Vents are also called flues.

Here are the most common types and their functions:

  • Exhaust vents or mechanical ventilation allow the escape of damp air and odors from a bathroom, clothes dryer, and from the range above a stove in order to prevent the buildup of condensation.
  • Each plumbing drainpipe in the home is connected to a plumbing stack vent, which helps ensure the appliance’s proper drainage by preventing back-siphoning, which can pull noxious vapors and sewer gases back into the home. One important aspect of their installation is that they should not be located with 3 feet of an openable window so that these gases don’t get sucked back into the home.
  • Vents installed in the attic space are known as roof vents or turtle vents, which release hot air that can build up inside the attic as a result of heat rising from the living space below. Venting this hot air is important to prevent the premature deterioration of the roofing materials, which can overheat and lose adhesion or delaminate, as well as form condensation, under the right conditions, which can also affect wooden structural members and insulation.
  • Combustion vents are installed for fuel-burning appliances, such as a furnace, boiler, water heater, gas range, fireplace—any appliance that burns fuel for its operation, such as gas, propane, oil, wood, etc. They exhaust the toxic byproducts of combustion to the outdoors.
    Vents can be made of galvanized steel, such as a dryer vent. PVC is appropriate to use as plumbing stack vents, depending on the appliance, as long as there is no chance of the exhausted air being too warm, which can cause the PVC to melt. Some vents may have caps or hoods to prevent rainwater from entering them (such as a dryer vent), and others don’t, such as plumbing stacks. There are also vent-like roof penetrations that are actually air intakes, such as for a furnace, which aid proper combustion.

Vents can be double-walled or single-wall, depending on their purpose. Combustion vents tend to be double-walled. Some vents serve multiple items or appliances, but they tend to be of the same type. A vent that serves more than one plumbing fixture needs to be larger in order to move the gas at an appropriate rate.

Problems with Combustion Vents

If installed properly, vents tend to operate problem-free, but poor installation or materials can lead to issues, such as leaks, corrosion, and insufficient ventilation. That’s when the problems can affect the living space and appliances below. The most common issues occur with combustion vents.

To work effectively, a combustion vent has to draw adequately, which is the natural process that moves hot exhaust gases up and out the exhaust flue or vent. Another way to say it is that the vent needs to have a good draft. The effectiveness of the draft is influenced by several factors.

These factors include:

  • thermal buoyancy, which is the tendency of hot air to rise. The hotter the gas is, the faster it will rise;
  • unrestricted flow, which means that the exhaust flue can’t be too small or have too many bends, since these two things slow the flow; and
  • proper length. If a flue is too long, the gases will cool and condensation will form. Condensation can cause corrosion of the sheet metal exhaust flue, as well as the furnace’s components.

An important factor in the quality of the draft is adequate clearance above the roof. This generally means that the vent should follow either the manufacturer’s installation recommendations or the “2-10 Rule” required by most building code regulations for chimney terminations. The 2-10 Rule states that combustion vents should terminate at least 2 feet above any part of the highest part of the roof, including the roof itself, within 10 feet. For example, if a combustion vent is 3 feet away from a dryer vent on a flat roof, the combustion vent should be two feet higher than the dryer vent. If a combustion vent is on the low part of a sloping roof, the vent must be 2 feet higher than the nearest point of the sloped roof that’s within 10 feet. So, if you see a vent that doesn’t meet the 2-10 Rule, a qualified HVAC contractor may need to re-install a vent of the proper height.

White deposits on combustion vents or on the roof below them are evidence that excessive condensation has been forming. This can be caused by a vent that:

  • is too long;
  • has too many bends; or
  • has poorly sloped sections that slow the flow of exhaust gases.

If you see this condition on a roof, you should look for similar white deposits on the combustion appliance served by the vent. Poor venting can cause corrosion that may shorten the lifespan of that appliance.

Flashing for Vents

The critical installation that keeps moisture and the elements from entering the roof surface down the side of the vent is called flashing. Different types of vents require flashing that is appropriate for the type of vent installation, as well as of a compatible material so that it doesn’t cause galvanic corrosion or other issues that will cause the vent or flashing to deteriorate prematurely. Flashing may need to be on top of roof shingles or below stone tiles; a good roofing contractor who specializes in your roof’s material will know what type of flashing is required and how it should be installed.

Of course, a leak in the attic, or any signs of rust or staining on the vent, flashing or roof is a sign of a problem. If you do suspect a problem, your first call should be to your home inspector so that he can investigate it before you call a contractor. Most contractors are honest, but since the contractor has something to sell, and it’s in his best interests to find a problem that he can charge you to fix. Call your InterNACHI home inspector first; it’s his job to find the problem, not fix it.